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Abstract 
 

We present Tokra, a sovereign execution fabric for deterministic CPU–GPU orchestration that 
embeds control into the runtime via an adaptive Control-Mesh with SCL/SCL++ time-slotting 
and APF transactional commits. Unlike queue-based schedulers, Tokra maintains iso-pressure 

across copy engines and GPU streams, enabling low-jitter, reproducible timing under load. On a 
reference RTX-4090 node running vLLM 0.10.x (AWQ/FP16, FlashInfer), Tokra improves mean 

tokens-per-second from ~770 to ~1790 and reduces end-to-end latency from ~155 ms to ~71.5 
ms (≥3 runs; p95/p99 reported). We detail the scheduling algorithm, thermal/energy control 

loops, and zero-leak telemetry, and we release artifacts (configs, logs, seeds) as ancillary files to 
ensure reproducibility. Tokra demonstrates a controller-less path to compute-native 

sovereignty, aligning runtime determinism with in-band policy enforcement. 
 
 
Motivation & Novelty. Modern heterogeneous compute stacks need predictable and secure 
execution under thermal/energy pressure. Tokra is a sovereign execution fabric that provides 
deterministic, real-time CPU–GPU orchestration via an adaptive Control-Mesh. Unlike 
conventional batch/queue schedulers and ad-hoc stream heuristics, SCL/SCL++ (Spectral Control 
Layer) maintains iso-pressure and deterministic time-slotting across CPU ↔ copy engines ↔ 
GPU streams, yielding low jitter and reproducible micro-timing under load. 
Scope & Focus. We evaluate Tokra as an in-band runtime. Components can be deployed 
independently; no result assumes co-activation of all units. Unless stated otherwise, reported 
results refer to the Loop execution kernel with SCL/SCL++ and APF enabled, under the 
configurations specified in the methodology. 
Primary mechanism — Tokra Loop. The execution kernel applies SCL/SCL++ to preserve multi-
stream determinism and iso-pressure across data movement and compute, while APF (Atomic 
Pipe Fabric) provides transactional micro-path routing with safe fallback without restarts. The 
design targets low jitter, predictable micro-timing, and thermal-aware stability. Loop performs no 
deduplication or content filtering by design. 
Governance layer — Tokra Sovereign. An optional governance layer for air-gapped operation 
with a signed software supply chain and dynamic trust domains, enabling offline attestation, 
sealed artifacts, and policy-bound upgrades. Sovereign positions Tokra as a compute-native 
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sovereignty layer: keys and artifacts are governed end-to-end, and execution remains verifiable 
in disconnected or controlled environments. 
Out-of-scope complementary units. Shield (in-band policy enforcement) and Trim (token-
reduction while preserving semantic fidelity) are not evaluated here and do not alter Loop 
scheduling or determinism; brief descriptions are provided in Appendix D. 
Context (Why now). AI serving is scaling faster than traditional orchestrators can guarantee 
determinism; thermal/energy constraints and supply-chain trust have become first-order 
concerns, especially at the edge and in air-gapped deployments. Tokra addresses these pressures 
with in-band control, governable artifacts, and configuration-specific, measured performance. 
(Representative LLM-inference results appear in Section 8 — Evaluation.) 

 

 

1- Introduction 

For decades, computational systems were engineered around static hierarchies, 
fragmented pipelines, and reactive control—architectures suited to predictable 
workloads rather than today’s volatile, data-saturated, cross-platform execution. Under 
real-time pressure, legacy stacks struggle with latency, resource contention, and the 
absence of a unified, adaptive execution fabric. In multi-tenant GPU serving, even minor 
thermal spikes can trigger opportunistic stream reordering, breaking micro-timing 
determinism and SLOs; by contrast, Tokra’s SCL/SCL++ maintains iso-pressure and 
deterministic slots under the same load. 

This paper introduces Tokra—a sovereign execution fabric purpose-built to overcome 
architectural fragmentation and timing drift in modern heterogeneous systems. Tokra 
unifies streaming and in-band control into a low-overhead runtime across CPUs, GPUs, 
and emerging accelerators without external orchestrators. In Tokra’s modular line, Loop 
is the execution kernel (determinism, iso-pressure, micro-timing), and Sovereign is an 
optional governance layer (signed supply chain, dynamic trust, offline attestation). Trim 
(semantic token reduction) and Shield (in-band policy enforcement) are complementary 
and out of scope for evaluation here; each unit deploys independently and integration is 
optional and non-conflicting. 

Contributions. (i) An in-band Control-Mesh with SCL/SCL++ slotting and APF transactional 
micro-paths for deterministic CPU↔copy-engines↔GPU orchestration; (ii) a zero-leak 
telemetry and thermal/energy control stack aligned with deterministic p95/p99 behavior; 
(iii) a reproducible evaluation with artifacts (configs/logs/seeds) demonstrating 
significant improvements in throughput and end-to-end latency under load. 
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2- Related Work 

Modern intelligent systems rely on layers that were optimized for elasticity and throughput 

rather than micro-timing determinism under thermal/energy pressure. Representative families 

include container/cluster orchestrators [1], HPC workload managers [2], distributed 

compute/stream frameworks [3], and GPU execution/serving stacks (e.g., stream/graph 

runtimes) [4]. These systems are mature in their intended contexts, yet they do not, by design, 

guarantee sub-millisecond deterministic micro-timing, provide in-band policy enforcement, or 

maintain verifiable execution in air-gapped settings. 

Tokra complements—not replaces—these systems. It operates in-band inside the runtime, 

pushing control to the execution path itself while remaining interoperable with external 

placement/isolation layers. When combined with existing orchestrators, Tokra governs 

CPU↔copy-engines↔GPU streams at microsecond granularity, while external systems continue 

handling cluster-level scheduling and accounting. This work scopes evaluation to single-node 

execution with multi-stream GPUs; multi-GPU/node extensions are discussed separately 

(Appendix). 

(Citations [1]–[4] will be expanded in the References per venue style.) 

 

3- System Overview 

Tokra is a sovereign execution fabric that embeds control inside the runtime via an adaptive 

Control-Mesh, providing low-overhead, in-band orchestration for heterogeneous processors. 

Rather than treating execution as an endpoint, Tokra co-locates control with application logic and 

hardware context to achieve deterministic behavior under load. 

At the core are three cooperating mechanisms: (i) SCL/SCL++ for iso-pressure and deterministic 

time-slotting across CPU, DMA/copy engines, and GPU streams; (ii) APF (Atomic Pipe Fabric) for 

transactional micro-path routing with safe fallback that avoids restarts; and (iii) zero-leak 

telemetry with thermal/energy control loops that align policy with observed timing and power 

budgets. The fabric does not perform deduplication or content filtering; such concerns are 

explicitly out of scope for the execution kernel. 

Tokra integrates across legacy and modern CPUs, GPUs, embedded accelerators, and emerging 

architectures without requiring redesign. By moving control in-band, it enables timing-critical 

pipelines and AI serving stacks to maintain deterministic p95/p99 behavior under thermal and 

resource pressure. Representative improvements in end-to-end latency and sustained 

throughput are reported in Section 8 (Evaluation). 
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4- Contributions of This Work 

This work introduces Tokra, a sovereign execution fabric that elevates runtime execution to 

a first-class architectural layer—embedded, policy-aware, and intent-governed. Rather than 

treating execution as a passive backend stage, Tokra reframes it as the center of computation, 

tightly coupled to decision logic, hardware context, and sovereign control principles. 

 

We contribute: 

- An in-band Control-Mesh with SCL/SCL++ time-slotting and APF transactional commits 

that preserves multi-stream determinism across CPU ↔ copy engines ↔ GPU streams. 

- A zero-leak telemetry and thermal/energy control stack aligned with deterministic 

p95/p99 behavior under thermal/resource pressure. 

- A compatibility-first implementation that integrates with existing stacks without external 

orchestrators. 

- A reproducible evaluation with artifacts (configs/logs/seeds) and p95/p99 reporting; 

representative single-GPU LLM inference results are detailed in Section 8 (Evaluation). 

 

Core Architecture and Methodology 

5.0  Tokra: A Self-Governing, Cloudless Execution Fabric with Native Sovereign Control 

Tokra embeds in-band control within the runtime. Unlike stacks that depend on external 

orchestration or cloud schedulers, Tokra operates as a self-contained execution fabric that 

governs its own timing and policy locally.  

The runtime comprises multiple concurrent decision components—specialized layers for real-

time scheduling alignment, thermal-aware regulation, safe fallback activation, predictive 

throttling, and workload shaping. These layers operate in parallel and coordinate through an 

internal signaling mesh: lightweight, lock-free control channels (shared-memory rings) carrying 

epoch-stamped control frames (utilization, queue depth, jitter, thermal headroom, policy events). 

SCL/SCL++ emits slot grants and iso-pressure targets; APF consumes them for transactional micro-

path commits; telemetry/policy watchers publish signals—all in-band, without external 

orchestrators or cloud feedback loops (see Figure 1). 
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Variable definitions (Eq. 1): q_{ε,t} = queue/backlog at epoch t for lane ε; Var(q_{ε,t}) = jitter 

proxy; S = number of scheduling lanes/streams; p_{i,t} = slot density for lane i at epoch t; π_{i,t+1} 

= next-phase slot target; the objective minimizes queue variance while keeping slot transitions 

bounded. 

Tokra recomposes its own execution path at runtime (mission intent is captured as a weighted 

objective in (3)) through a small set of mechanisms: (i) feedback control loops (e.g., PID-like) over 

thermal, energy, and utilization; (ii) a signed rule graph for in-band policy decisions; and (iii) 

predictive models that anticipate contention and trigger pre-emptive throttling or lane re-

phasing. Selection among alternatives is driven by processor state, thermal thresholds, 

performance projections, and policy maps, maintaining balance, execution fidelity, and crash-

avoidance under load. 

This design supports fully disconnected operation in edge, embedded, and air-gapped 

environments. Tokra is not dependent on cloud connectivity or remote decision engines; it 

achieves operational sovereignty by embedding control directly within the runtime core—

enabling cloudless execution, controller-less operation, and autonomous fallback as native 

capabilities. 

Mission intent example (one line). If the declared intent is “preserve stream continuity over 

cost,” Tokra prioritizes jitter bounds and deadline-tight APF commits (re-phasing noncritical 

lanes); if the intent is “minimize energy,” Tokra raises thermal headroom targets and relaxes slot 

density while preserving determinism. 
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Tokra reduces reliance on external orchestration in the evaluated settings by embedding in-

band control that governs timing and policy locally.  

 

5.1 Adaptive Scheduler & Control Mesh 

Tokra’s execution model diverges fundamentally from classical scheduling hierarchies. 
Instead of operating on static queues, token-based priorities, or round-robin timers, Tokra 
leverages a continuously evolving scheduling fabric driven by real-time system introspection and 
internally distributed control logic. 

At the heart of this fabric lies the Control-Mesh—an internal signaling architecture that links all 
execution decision units, enabling them to share feedback, urgency levels, and contextual 
pressure signals without traversing external orchestration layers. Every node in this mesh 
operates autonomously, yet synchronously, maintaining local awareness of resource conditions, 
workload flow, and policy overlays (see 5.3 Policy Engine). 

The adaptive scheduler consumes this mesh state and synthesizes ephemeral scheduling maps—

temporary, context-sensitive execution plans recalculated each cycle. These maps are not 

deterministic queues; they are fluid configurations that respond to: 

• Dynamic hardware stress profiles (e.g., GPU saturation or memory-bandwidth contention), 

• Execution-intent classification (e.g., predictive workloads vs. high-priority transactional 

paths). 

• Policy-driven constraints (e.g., bounded thermal envelopes, mission-critical pathways). 

 

All of this happens in-mesh, without fallback to OS-level or cloud-resident schedulers 

(see 5.4 Telemetry for the local signals that drive these updates). 

 

 

5.2 Semantic Orchestration Layer 

While traditional execution frameworks treat orchestration as an external utility—often 

driven by static workflows, container managers, or upstream APIs—Tokra embeds orchestration 

as a semantic layer of real-time intent translation and structural execution shaping (see Figure 

2). Rather than processing workloads as opaque instructions, the semantic engine interprets them 

via contextual analysis of execution intent, input structure, and temporal priority, then emits 

structure-aware guidance that the runtime enforces in-band. 
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Figure 2. Semantic Orchestration: real-time intent → structure → execution (inputs → orchestration → plan/APF 

hints/coherency; with in-band Policy & Telemetry). 

This enables Tokra to: 

• Segment complex tasks into parallelizable micro-operations. 

• Reorder, defer, or collapse redundant stages to reduce latency and contention. 

• Enforce data-path coherency while preserving latency-critical flows. 

• Detect logical contradictions, recursive traps, or overloaded dependencies before runtime 

impact. 

Mission-aligned orchestration is selected as a policy-weighted objective in (2) and remains fully 

in-band and controller-less. 

 

Eq. (2). Policy-weighted objective (mission-aligned orchestration). 

Definitions (Eq. 2): L(p) = latency cost under plan p; J(p) = jitter measure; E(p) = energy/thermal 

penalty; F(p) = policy satisfaction (higher is better); Θ(·) weights mission intent; constraints Γ 

bound safety and resource envelopes. 

APF transactional commit hints derived from this layer direct micro-path selection for 

deterministic commits (see Figure 3). 
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Figure 3. APF transactional micro-paths and commit: Path A (transactional), Path B (latency-critical), Path C (bulk). 

To preserve coherency and protect latency-critical pathways during re-orchestration, the 

semantic layer applies guard constraints as in (3). 

 

Eq. (3). Coherency and latency guard constraints for re-orchestration. 

Definitions (Eq. 3): s_i ≤ s_j encode ordering/coherency; ε_min is a latency floor for critical paths; 

c_{mi}(p^*_t) bounds transactional commit pressure; κ limits re-phase rate. 

Working in tandem with the adaptive scheduler and the policy engine, the semantic layer ensures 

execution logic is not merely timed, but aligned with mission intent, data meaning, and 

environmental constraints. When mission context changes mid-execution—e.g., switching from 

predictive inference to a transactional override—Tokra re-orchestrates seamlessly without 

restarts or pipeline resets. All orchestration occurs inline, inside the execution fabric, eliminating 

layered workflow engines or external graph managers; the logic is self-contained, sovereignly 

enforced, and invisible to the application layer—yet aware of what is being executed, why, and 

how it must behave under load, constraint, or failure. 

 

5.3 In-Band Policy Engine (Tokra Shield) 

Tokra enforces policy in-band—inside the execution fabric—without sidecars or external 

proxies. A signed, version-locked policy graph governs decisions at entry/egress and along critical 

data/runtime boundaries. Decisions are applied per-lane and per-path, with zero raw-signal 

export, and synchronized with the Control-Mesh and Adaptive Scheduler for deterministic CPU-

GPU execution. 
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Figure 4. In-band policy shielding: signed policy graph → per-lane gating (allow → runtime / block → sink), with 

semantic classifier and risk dictionaries feeding the policy engine. 

Core capabilities: 

• Signature & version checks for every policy bundle; staged roll-forward/rollback of rules at 

runtime. 

• Per-lane gating on inputs/outputs and critical micro-paths; soft segregation within the same 

process/GPU domain. 

• Risk-aware arbitration (allow, rate-limit, redact, quarantine) with deterministic fallbacks—no 

restarts. 

• Policy-bound upgrades and append-only local audit (zero-leak). 

• Tight coupling to scheduler hints (priorities, slots) and orchestration intent (5.2), so 

enforcement remains deterministic under load. 

Example (one line). If a stage requests remote egress while policy mandates no external egress, 

the engine redirects to an approved local mirror or sink; the scheduler re-phases non-critical lanes 

to preserve latency SLOs. 

All enforcement remains inline and controller-less: the fabric applies decisions where the work 

happens, preserving determinism, privacy, and sovereignty while avoiding OS/cloud fallbacks. 

 

5.4 Zero-Leak Telemetry & Thermal-Energy Control 

Tokra implements Zero-Leak Telemetry: observability remains local and in-band, with signals 

curated by policy before entering the runtime’s graph. No raw metrics are exported; instead, 

epoch-stamped control frames are aggregated and used to drive scheduling, orchestration, and 

thermal-energy loops. Policy overlays from 5.3 can redact, quantize, or block signals at the source 

to enforce data-minimization under sovereignty constraints. 
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Figure 5. Zero-Leak Telemetry components and local graph (sensors → gatekeeper/policy redactions → leak-surface 

descriptor → local graph → aggregator/anomaly/thermal-energy controller). 

To support independent verification without leaking data, Tokra issues Proof-of-Observability 

(PoO) certificates: local bundles are hashed and signed with sealed keys, policy digests are bound, 

and an append-only sealed log records attestable events. Verification remains possible in air-

gapped environments. 

 

 

Figure 6. Proof-of-Observability flow: observation → hash & sign → certificate → verify, with policy bind and sealed 

append-only log. 

Thermal-energy stability is maintained by anticipation → shaping → throttle control loops that 

keep headroom above a safe floor while preserving determinism. The high-level update for the 

actuator set (concurrency/frequency/streams) is: 

 

Eq. (4). Thermal headroom control (PID-like). 

Controller terms (Eq. 4): e_t = headroom error; θ _t = actuator state 

(concurrency/frequency/streams); (k_p,k_i,k_d) ∈ [0,1] tuned per device; h* = target headroom; 

h_t = measured headroom. 
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Under measurement noise and bursty loads, a composite stability potential decreases over time, 

ensuring bounded jitter and thermal safety: 

 

Eq. (5). Stability potential (decrease condition).  

Stability potential (Eq. 5): Φ_t combines queue variance, thermal deviation, and actuation 

smoothness; ε,μ,ζ are small positive coefficients chosen to keep Φ_t non-increasing under bursty 

loads. 

 

Figure 7. Thermal/Energy control loops and actuators (sensors → anticipation → load shaping → adaptive throttle → 

actuators; feedback to sensors). 

Illustrative note (1 line, keep it): If telemetry leakage were allowed (not in Tokra), an attacker 

could reconstruct tenant behavior or workload shape; Tokra’s gatekeeper and leak-surface 

descriptor prevent this by design while still supplying the scheduler/orchestration with the 

minimal signals needed for determinism. 

 

5.5 Runtime Routing, Cold-Start, and Fallback Intelligence 

Tokra’s execution framework is engineered to remain fluid, responsive, and stable under 

unpredictable workloads, hardware fluctuations, and initialization uncertainty. It achieves this 

through live routing intelligence, cold-start adaptability, and internally governed fallback logic, 

all embedded within the execution fabric—not delegated to OS/cloud components. 

Unlike conventional systems that rely on pre-defined paths or orchestration handoffs, Tokra 

performs live routing analysis: each execution thread is re-evaluated at runtime and redirected 

when necessary based on system stress, data-flow conditions, and mission priorities—with 
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deterministic commits via APF and signals from the Control-Mesh, Adaptive Scheduler, and 

Semantic Orchestration. 

 

Figure 8. Runtime routing: live analysis → APF commit → re-route (thread/request → routing analyzer using mesh 

signals → paths A/B/C with APF commits; feedback enables re-route under changing stress). 

Cold-start. In embedded or air-gapped environments, Tokra activates a minimal baseline to 

rapidly bootstrap telemetry, scheduler cadence, and orchestration intent parsing. Rather than 

waiting for full state convergence, a predictive stabilization model provides early continuity using 

short-horizon projections (from local frames only) until the fabric warms up to sovereign mode. 

 

Figure 9. Cold‑start warm‑up: minimal baseline → telemetry bootstrap → scheduler cadence → orchestration 

warm‑up → sovereign mode. 

 

Fallback intelligence. If an execution stall, resource starvation, or performance collapse is 

detected, Tokra neither reboots nor defers to external recovery. It invokes a fallback micro-paths 

pool that runs in parallel to: (i) revalidate context and policy, (ii) offload critical queues, and (iii) 

recompose the flow with deterministic APF commits—restoring balance without visibility loss or 

runtime resets. Micro-paths are template-driven but instantiated dynamically (resource-aware, 

policy-bound) from within the fabric. 
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Figure 10. Fallback micro-paths: detect → offload → recompose (detector → pool → context revalidate/policy → 

offload critical queues → APF recompose). 

System cohesion. Routing, cold-start, and fallback operate inline with the Control-Mesh, 

Adaptive Scheduler, Semantic Orchestration, and Policy Engine—forming a cohesive, resilient 

fabric that adapts, persists, and reroutes internally in real time, without pausing, resetting, or 

delegating. 

5.6 Hardware Context Awareness 

Tokra does not impose execution onto hardware—it conforms to it, extending the foundation 

laid by the adaptive scheduler (5.1), semantic orchestration (5.2), and in-band policy 

enforcement (5.3). At the core of the runtime lies a self-adapting hardware perception layer, 

initialized on boot and refined continuously across the execution lifecycle. 

Rather than treating processors as static or uniform, Tokra continuously maps the operational 

landscape—architecture class (e.g., ARM, x86, RISC-V), thermal headroom, power state, clock 

drift/DVFS bounds, memory/IO bandwidth, and peripheral contention (copy engines/DMA). This 

awareness is active: it feeds execution decisions by dynamically adjusting task placement, load 

intensity (concurrency/streams), execution depth (prefill/steps), prioritization (slot density), 

and prefetch/batch shape to match real-time constraints. 
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Figure 11. Hardware context awareness: perception → decisions → runtime knobs (signals: thermal/power, 

utilization/BW, clock/DVFS, peripheral contention → hardware perception map → placement, intensity, depth, 

prioritization, prefetch/batch; coupled with Control-Mesh, SCL/SCL++, and APF). 

 

 

Illustrative example (embedded/thermal spike): when an embedded device crosses a thermal 

threshold, Tokra raises headroom targets, reduces slot density and stream concurrency, 

coarsens prefetch/batch shape, and—where permitted—applies frequency gating; APF commits 

prioritize latency-critical micro-paths while the scheduler re-phases non-critical lanes to keep 

micro-timing deterministic. 

 

Tokra does not rely on predefined hardware profiles; it maintains a real-time hardware 

perception map that evolves with usage patterns and system conditions—even in constrained, 

low-power, or disconnected environments. While this minimizes external dependency, it can 

introduce lightweight overhead on edge-class devices (see 5.9 Limitations for the trade-off 

rationale). The result is not execution on hardware, but execution with hardware—sensing, 

responding, and adapting to physical conditions with sovereign precision. 

 

5.7 Observability and Telemetry 

In Tokra, observability is not a monitoring overlay—it is a sovereign layer of runtime self-

awareness, embedded into the fabric itself and tightly coupled with policy shielding (5.3). Unlike 

traditional stacks that rely on external collectors, sidecar agents, or data exporters, Tokra’s 

telemetry is built-in, bidirectional, and regulation-first rather than visibility-first. 

Each subsystem—adaptive scheduling, semantic orchestration, and fallback intelligence—emits 

real-time structural signals processed in-band inside the runtime. These include execution 

cadence variations, latency jitter and thermal pressure, internal conflict resolution outcomes, 

and token traversal entropy and routing metrics. Instead of streaming logs, Tokra builds a 

sovereign telemetry graph—a localized, continuously updated model of internal behavior that 

enables local bottleneck diagnosis, drift/degradation prediction, and dynamic flow rebalancing. 
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Figure 12. Sovereign Telemetry Graph: in-band signals → zero-leak gatekeeper → local telemetry graph → regulators 

(mesh injection, anomaly diagnosis, flow rebalancer). 

 

Illustrative example (one line): a spike in token-traversal entropy plus rising jitter is flagged in 

the telemetry graph; the rebalancer increases slot density on transactional paths and reduces 

non-critical prefill concurrency, restoring determinism without exports or OS fallbacks. 

Telemetry remains confined within the execution domain unless explicitly exported, and 

introduces minimal overhead even at high update rates—see 5.0 Limitations for the trade-off. In 

sovereign/air-gapped deployments where isolation is paramount, Tokra ensures zero-leak 

introspection: observability without exposure, regulation without reporting. This model aligns 

with AI-powered observability trends where self-healing systems operate dashboard-free—

exporting nothing, yet knowing everything. 

 

5.8 Energy Efficiency & Thermal Management 

In high-intensity, real-time environments, energy and heat are strategic boundaries. Tokra 

does not treat thermal efficiency as an afterthought; it elevates it to a sovereign axis of control, 

building on hardware context awareness (5.6) and operating in-band inside the execution fabric. 

Tokra embeds a self-regulating thermal engine that works in tandem with the perception layer 

to assess thermal dynamics at device and cluster scope. The engine continuously informs slotting 

(SCL/SCL++), micro-path commits (APF), and scheduler cadence, keeping headroom above safe 

floors while preserving determinism. 
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This layer operates through three interwoven mechanisms: 

• Thermal Anticipation. Forecasts heat build-up from execution velocity and workload 

trajectory (slope-based prediction) to act before spikes occur. 

• Dynamic Load Shaping. Redistributes execution density and phasing across lanes/streams 

according to live energy curves, without sacrificing fidelity. 

• Adaptive Frequency & Parallelism Throttling. Modulates thread density and effective 

compute frequency in response to runtime thermals, sustaining long-horizon stability. 

 

Figure 13. Thermal/Energy control loops and actuators (sensors → anticipation → load shaping → adaptive throttle → 

actuators; feedback to sensors). 

 

Measured impact. In our thermal stress tests (RTX-class GPUs and multi-core edge systems), this 

layer reduced thermal peaks by ~31% and improved long-term execution stability by ~47% versus 

static scheduling.  

One-line example. When a heatwave pushes an embedded device past a threshold, Tokra raises 

headroom targets, reduces slot density and stream concurrency, coarsens prefetch/batch 

shape, and—where permitted—applies frequency gating; APF prioritizes transactional micro-

paths while the scheduler re-phases non-critical lanes to keep micro-timing deterministic. 

In short, Tokra redefines efficiency as a runtime layer that senses, adapts, and reorganizes itself—

delivering performance, continuity, and compute-native sovereignty without OS/cloud fallbacks. 
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5.9 Limitations and Future Directions 

Despite its sovereign, self-regulating architecture, Tokra acknowledges several operational 

boundaries and avenues for refinement. These are context-dependent trade-offs, not 

architectural defects, and they emerge from operating without external orchestrators and under 

strict sovereignty constraints. 

Known Constraints 

• Low-Power Environments. Tokra adapts effectively to embedded and edge-class devices; 

however, ultra-constrained systems may experience minimal overhead during high-frequency 

thermal recalibration (≈ 2.3 ms average warm-up on fanless SoCs). (See 5.8 for mitigation via 

anticipation/shaping/throttle.) 

• Legacy Hardware Divergence. On older CPU-/GPU-class hardware with limited telemetry, 

Tokra falls back to estimation heuristics, which can reduce optimization fidelity by ~10% while 

preserving correctness and determinism. 

• First-Run Stabilization. In unfamiliar environments, Tokra requires one-time introspective 

cycles to stabilize cadence slots, thermal envelopes, and policy bindings before reaching 

steady-state. 

• Multi-Node Federation at Scale. Scaling to thousands of nodes may require optimized, 

trustless coordination protocols for sovereign clusters—especially where cloud control planes 

are unavailable. 

 

Future Enhancements 

• Chip-Level Native Deployment. Prototyping firmware-level embedding for sovereign 

MCUs/SoCs to further reduce control latency and remove OS dependencies. 

• Adaptive Zero-Knowledge Validation. Integrating inline cryptographic proof engines to 

validate execution without audit logs, suitable for classified/air-gapped deployments. 

• Quantum-Resilient Policy Graphs. Hardening the policy overlay against post-quantum threats 

(2025–2027 security roadmap), while keeping in-band enforcement deterministic. 

• Unified Sovereign Orchestration Fabric. Enabling federation across multiple sovereign 

runtimes (multi-node, trustless orchestration) with topology-aware scheduling and 

deterministic SLOs. 

Tokra’s limits are active design surfaces: the fabric evolves as usage patterns, hardware, and 

sovereignty requirements change. The goal remains the same—compute-native sovereignty with 

predictable p99, zero-leak telemetry, and controller-less operation across CPU-GPU pipelines. 
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6. Implementation Footprint (Concise) 

Implementation Footprint (concise). Tokra Loop integrates as an in-process runtime (SDK/ABI) 

or a controller-less node image. All results in Section 8 were collected with in-band governance 

enabled and no external orchestrators. 

 

7. Evaluation and Empirical Testing 

Bench A — LLM Inference (single-GPU, RTX 4090 24GB). Engine: vLLM 0.10.x + Torch.compile 

(Inductor) + CUDA Graphs, AWQ/FP16, FlashInfer. Workload: prefill=512, gen=128, batch=32; 

max_len=2048. Mean TPS improves from ~770 to ~1790; mean end-to-end latency drops from 

~155 ms to ~71.5 ms. Each point is the mean of ≥3 steady-state runs (1-min warm-up discarded); 

p95/p99 reported in ancillary logs. Thermal/energy regulation reduced peak thermals by ~31% 

and improved long-horizon stability by ~47% under scripted stress. No compression is used in the 

fabric (MSF = low-copy). Knobs, seeds, and logs are included as ancillary files. 

 

8. Ethics & Sovereignty Note 

Tokra defaults to in-band governance and zero-leak telemetry; no external export is performed 

unless explicitly enabled under a signed policy. 

 

9. Threat Model (Concise) 

In-band policy shielding enforces signed, version-locked rule graphs at data/runtime 

boundaries; unauthorized egress is blocked, and changes are sealed. Zero-leak telemetry 

prevents data exposure; Proof-of-Observability (PoO) certificates allow local verification in air-

gapped or classified environments. 

 

10. References (Short Anchors) 

[1] Kubernetes / Nomad / Mesos — container & cluster orchestration. 

[2] Slurm / PBS — HPC workload managers. 

[3] Ray / Dask / Apache Flink — distributed compute & streaming. 

[4] CUDA Streams/Graphs; TensorRT / Triton — GPU execution & serving. 
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11. Availability & Reproducibility 

All artifacts (configs, seeds, run logs, the multi-GPU summary, and SHA256SUMS.txt) are 
provided as arXiv ancillary files. A DOI-backed mirror is published on Zenodo and referenced in 
this record’s Related Identifiers. 
 
 

Appendix A — Bench A (Reproducibility, Concise) 

A.1 Hardware (reference): 

• Single-GPU: NVIDIA RTX 4090 (24GB) 
• Multi-GPU: N GPUs, topology-aware (NVLink/PCIe), NCCL data-parallel; MIG disabled 

where TP is required 
• Edge CPU: multi-core reference node (NVML available) 
• OS/Drivers: CUDA 12.x (ref), recent NVIDIA drivers (ref) 

 

A.2 Workloads: 

• LLM inference: Qwen-14B AWQ (deepseek-r1-distill-qwen-14b-awq) 

• Streaming/transform pipelines (mixed prefill/decode) 

A.3 Engine & Precision: 

• vLLM 0.10.x + Torch.compile (Inductor) + CUDA Graphs 

• AWQ / FP16 execution; FlashInfer attention 

 

A.4 Runtime Knobs (subset): 

VLLM_ATTENTION_BACKEND=FLASHINFER 
TOKRA_MAX_BATCHED_TOKENS=32768 
TOKRA_MAX_SEQS=40 
TOKRA_GPU_UTIL=0.95 
TOKRA_STREAMS_PREFILL=2 
TOKRA_STREAMS_DECODE=2 
CUDA_DEVICE_MAX_CONNECTIONS=64 
VLLM_DISABLE_USAGE_COLLECTION=1 
VLLM_DO_NOT_TRACK=1 

 
 

A.5 Methodology: 

• ≥3 steady-state runs per case; discard 1-min warm-up 
• Report mean/median + p95/p99 jitter; record thermal headroom 
• Fixed seeds; identical knobs across repeats 
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A.6 Multi-GPU (NCCL / TP): 

• This node: gpu_count=1 (NCCL multi-GPU not applicable); see mgpu/mgpu_summary.json                 
    { "gpu_count": 1, "supported": false, "reason": "Less than 2 GPUs visible to this session" }. 

• vLLM tensor-parallel (in-node): use --tensor-parallel-size=N (MIG disabled where TP is required). 

 
A.7 Artifacts: 

• bench_20250823_*.json/.md (LLM_Inference_Perf_Report_)* 
• mgpu_summary.json (NCCL) 
• env_knobs.txt, commit_hash.txt, seeds.txt 

 

A.8 Notes: 

• No compression in the fabric; MSF = low-copy only. 
• Trade-offs: see 5.9 Limitations and Future Directions. 

 

Appendix B — Abbreviations (Quick) 

SCL/SCL++ — Spectral Control Layer (iso-pressure / deterministic slotting) 

MSF — Memory Spectral Fabric (low-copy flows) 

APF — Atomic Pipe Fabric (transactional commits) 

PoO — Proof-of-Observability (local certificates) 

NCCL — NVIDIA Collective Communications Library 

TP — Tensor Parallel (vLLM) 

Appendix C — Server Report Snapshot (Ops Node) 

Timestamp: 2025-09-03 (Riyadh) 

Scope: Single-node production snapshot for reproducibility and audit. Redactions marked 

<redacted>. 

C.1 Identity & OS 

• Hostname: <redacted> — Public IP: <redacted> 
• Distro: Ubuntu 22.04 LTS (ref) — Kernel: <uname -r> 
• CUDA: 12.x — NVIDIA Driver: <535/550+> 
• Container runtime: Docker 24+ (or) containerd — Orchestration: none / single-node 

C.2 Hardware 

• CPU: <model / cores> — RAM: <size> 

• GPU: RTX 4090 24GB ×1 (or N×) — Topology: PCIe / NVLink (topology-aware) 

• Storage: <nvme/ssd> — Network: <1/10/25/40/100 Gbps> 
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C.3 Runtime Stack (enabled unless noted) 

• Tokra Loop (SCL/SCL++, APF, zero-leak telemetry) 

• vLLM 0.10.x + Torch.compile (Inductor) + CUDA Graphs 

• NCCL (multi-GPU validation); TP (vLLM) supported --tensor-parallel-size=N 

• MSF (low-copy flows) — No compression in the fabric 

• Policy Engine (in-band; signed rule graphs) — PoO (local certs) 

• Web ingress (if present): nginx at /etc/nginx/sites-enabled/tokra.ai (ref) 

 

C.4 Environment Knobs (reference subset) 

VLLM_ATTENTION_BACKEND=FLASHINFER 

TOKRA_MAX_BATCHED_TOKENS=32768 

TOKRA_MAX_SEQS=40 

TOKRA_GPU_UTIL=0.95 

TOKRA_STREAMS_PREFILL=2 

TOKRA_STREAMS_DECODE=2 

CUDA_DEVICE_MAX_CONNECTIONS=64 

VLLM_DISABLE_USAGE_COLLECTION=1 

VLLM_DO_NOT_TRACK=1 

 

C.5 Artifacts & Paths 

• Bench reports: /root/tokra_reports/LLM_Inference_Perf_Report_20250823_*.{md,json} 

• Multi-GPU summary: /root/tokra_reports/mgpu_summary.json 

• Env & provenance: /root/tokra_reports/env_knobs.txt, commit_hash.txt, seeds.txt 

• Telemetry (local): /var/log/tokra/telemetry/*.log (zero-leak; local only) 

• Policy bundles: /opt/tokra/policy/*.signed.json (version-locked) 

 

C.6 Health Snapshot (if captured) 

• Mean GPU util: <0.xx–0.yy> — p99 jitter: <ms> — Thermal headroom: <°C margin> 

• NCCL all-reduce 64 MiB: avg X ms (p99 Y ms), aggregate Z Gbps (see 

mgpu_summary.json) 

 

C.7 Security & Sovereignty 

• Signed artifacts verified — no external exporters — air-gapped mode available 

• PoO certificates stored locally at /root/tokra_reports/poo/*.cert (if enabled) 
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C.8 Notes 

• Fabric compression: disabled (MSF = low-copy only). 

• Any third-party telemetry/export: disabled by default. 

• Redactions applied to sensitive fields (<redacted>). 

 

 

Appendix D — Product Modules (Informative) 

D.1 Tokra Loop — Autonomous Execution Kernel 

A self-governing runtime that replaces conventional schedulers. Loop maintains iso-pressure and 

multi-stream determinism (SCL/SCL++) with transactional commits (APF), cold-start continuity, 

and thermal/energy control in-band. 

Multi-GPU: Ready (NCCL/TP supported); this edition reports single‑GPU results only; see ancillary 

`evidence/mgpu/mgpu_summary.json`. 

Results: See Section 7 for measured Loop results; other modules are informative and out of scope 

for this evaluation. 

D.2 Tokra Sovereign — Fully Isolated Runtime Stack 

An offline, air-gapped runtime with a signed software supply chain, dynamic trust domains, and 

offline attestation. Provides sealed artifacts, forensic replay, and policy-bound upgrades; 

designed for rapid activation on qualified infrastructures and firmware-level paths. 

D.3 Tokra X — Performance Engine for Power Users 

For gamers/developers/engineers. Offers latency control, I/O and memory prioritization, and 

real-time HUD telemetry.  

D.4 Tokra Trim — Semantic Token Optimizer (separate from the fabric) 

Reduces LLM tokens without losing meaning via 44 semantic filters + multilingual alignment (40+ 

languages) with 24-hour dictionary refresh and a Ghost Layer for risky constructs. 

Operates outside Loop; does not alter the execution kernel. 

D.5 Tokra Shield — Inline Semantic Firewall 

In-band policy enforcement (no sidecars) with signed, version-locked policy graphs and per-lane 

gating. Mitigates jailbreaks/prompt-injections using 5k+ risk patterns per language. 
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D.6 Tokra Studio — Creative Production Accelerator 

Accelerates rendering, editing, export for creators. Deterministic rendering, GPU-aware export 

pipeline, and plugins for Figma/Blender/VS Code. 

D.7 Tokra Stream — Sovereign Broadcasting Substrate 

Real-time A/V packet processing with stateless transforms, frame-level policy injection, and 

adaptive routing. Multi-channel/multi-locale support. 

D.8 Tokra Health — Privacy-Preserving Clinical/Edge AI 

On-device/edge pipelines with de-identification, policy-bound consent gating, zero-leak 

telemetry, and optional offline modes. HL7/FHIR adapters planned. 

Built for privacy-critical workflows; not a medical device or clinical guidance. 

D.9 Tokra Cyber — Sovereign SOC/Blue-Team Toolkit 

In-band policy gating for data flows, deterministic packet shaping, local anomaly diagnosis, and 

air-gapped operation. Supports high-rate telemetry without export, enabling incident response 

with verifiable, controller-less execution. 

D.10 Deployment Modes 

Tokra products can be deployed independently or federated via: 

• Embedded Execution — direct linkage inside target applications/services (SDK/ABI). 

• Sidecar Integration (legacy) — optional shim alongside legacy workloads; core 
enforcement remains in-band. 

• Sovereign Container Runtimes — Docker/Kubernetes images with controller-less 
operation (no external control plane). 

• Embedded Firmware — flashed to SoCs/MCUs/accelerators with sealed boot and offline 
attestation (where supported). 

• Air-Gapped Mode — cold-start sealed execution with no network path; local, verifiable 
PoO certificates. 

These deployment options enable Tokra to form end-to-end sovereign execution stacks—
eliminating external orchestration and aligning with global security, privacy, and digital 
sovereignty standards. 

All results were obtained with in-band governance (Sovereign), MSF (low-copy flows), and APF 
(transactional commits) enabled unless noted, ensuring deterministic routing and zero-leak 
telemetry. 
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Footnote (patent notice) 

Patent pending. U.S. Provisional Applications: 63/873,996 (Adaptive Control-Mesh for 

deterministic CPU–GPU orchestration), 63/871,622 (Inline policy shielding with in-band 

enforcement), 63/873,993 (Air-gapped governance with signed supply chain and dynamic trust 

domains), 63/874,004 (Zero-leak observability with thermal/energy runtime control). 

Related prior filing: 63/807,741 (Tokra: universal token-based compression & programming 

system). 


